
Memory Management Schemes
for Radiosity Computation in Complex Environments

Daniel Meneveaux, Kadi Bouatouch and Eric Maisel
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

Hierarchical radiosity is a very demanding process in
terms of computation time and memory ressources even for
scenes of moderate complexity. To handle complex envi-
ronments, not fitting in memory, new solutions have to be
devised. One solution is to partition the scene into subsets
of polygons (

���
cells or clusters) and to maintain in mem-

ory only some of them. The radiosity computation is per-
formed only for this resident subset which changes during
the resolution process. This change entails many read and
write operations from or onto the disk. These disk transfers
must be ordered to make the radiosity algorithms tractable.
We propose in this paper different ordering strategies which
can be seen as complementary to those devised by Teller
[1].

Keywords :

Radiosity method, ordering, complex scenes, architec-
tural environments.

1 Introduction

Hierarchical radiosity provides high level realistic im-
ages at the expense of important computation and memory
resources, even for scenes of moderate complexity. This is
due to the need of meshing surfaces into elements and link-
ing these latter one to another. In other words, the number
of surface elements and links increases drastically with the
precision required. This is why performing lighting sim-
ulation becomes tricky for complex scenes such as build-
ings containing millions of geometric primitives. Indeed,
visibility relationships between surface elements have to be
performed, which entails a very important computing time.
However, many visibility computations are useless such as
those between a polygon and some objects occluded by a
large polygon like a wall. This problem has already been
addressed in [2, 3, 4, 5] where the authors propose to parti-
tion the scene into subsets of polygons (called cells) before

performing radiosity computations whether sequentially [1]
or in parallel [6].

Another problem is due to the fact that the amount of
data needed for radiosity computations (for very complex
scenes) is so large that they cannot fit in memory. One so-
lution to this problem is to partition the scene into cells so
that only a subset of cells is maintained in memory for il-
lumination computations. This is made possible with the
help of visibility relationships between these cells. Indeed,
a polygon in a subset C shoots/gathers energy to/from all the
objects lying in C as well as those visible through the holes
(also termed portals) in its boundary like windows or doors
for buildings interiors. Thus, one needs to load in mem-
ory the cells (stored on the disk) concerned with the radios-
ity computations, to withdraw the non-necessary cells from
memory and move them back to the disk. This operation re-
quires many disk transfers which are very time consuming.
These transfers must be ordered so as to reduce expensive
read and write operations (from/onto the disk or memory).

In this paper, several ordering strategies, different from
the ones described in [1], are proposed. These strategies
make use of the cells resulting from the scene partitioning
as well as a graph expressing visibility between these cells.

The organization of this paper is as follows. Previous
works are first summarized then followed by an overview of
our algorithm. Next, our ordering strategies are described
in detail. Finally, results of experiments are provided to
demonstrate the usefulness of these kinds of strategy.

2 Previous Works

A few works address the problem of global illumination
computation for complex scenes containing millions of ob-
jects. To our knowledge, Teller [1] is one of the first author
who proposed an algorithm for solving this problem. His
objective is to use radiosity for global illumination compu-
tations and a gathering scheme for the resolution. To this
end, his approach consists in subdividing the scene into

���
cells with the help of a BSP-based partitioning technique.
This latter allows to efficiently compute visibility between
clusters. A datastructure is associated with each visibility

relationship between two visible clusters. This datastruc-
ture contains: a list of blockers, a list of links between
the surfaces of both clusters, convex hulls of clusters, etc.
These data enable each cluster to gather energy from the
other clusters visible to it.

The datastructures resulting from the BSP partitioning,
clustering and visibility calculations are stored on disk.
Only a small portion of these data resides in memory for
radiosity computations. As the algorithm utilizes gathering,
it gathers energy impinging on each cluster. To this end,
it loads in memory a receiving cluster � as well as one of
the visible emitting cluster � . Afterwards � gathers energy
from � . This operation is repeated for all the other clus-
ters � visible from � . Each source cluster � modified by
the gathering operation (creation of new surface elements)
is saved on disk. Despite the use of the disk cache, these
disk tranfers remain too high. This is why Teller proposes
several heuristics for efficiently ordering these disk trans-
fers so that the contents of the cache changes slowly. These
heuristics are:
(a) Random order: Gathering is randomly performed; (b)
Model order: Clusters gather energy in the order in which
they were instantiated by the modeler; (c) Source order:
Select the receiving cluster which has most often acted as
a source; (d) Cell order: Schedules clusters by traversing
the cells of the BSP tree. In this way consecutive cells are
chosen by selecting the neighbour cell seen from the largest
portal. This approach exploits the visibility coherence of
clusters due to proximity and local intervisibility.

From the experiments done by Teller, the fourth ap-
proach which exploits the result of the BSP partitioning
method seems giving the best results.

A parallel algorithm for radiosity computation in large
environments has been proposed by Funkhouser [6]. This
algorithm makes use of the same datastructures as those
proposed by Teller. The scene is organized in groups of
clusters which are distributed by the host processor to the
slave processors. Each slave processor is in charge of com-
puting the radiosity solution for the group it is responsible
for. Funkhouser proposes two different strategies for load
balancing giving interesting speed-ups.

Note that, once global illumination computation has
been completed for complex environments with the meth-
ods described above, rendering techniques can be applied
to interactively walk through these environments [7] [8] [9]
and [10]. However, this topic is out of the scope of this
paper.

3 Overview

Our algorithm allows radiosity computation for complex
scenes such as buildings interiors made up of polygonal ob-
jects. A preprocessing step partitions the scene into subsets

called cells, and a graph expressing visibility relationships
between these cells is built [5]. In this visibility graph, a
vertex represents a cell and an edge between two vertices �
and � means that objects within � see other objects within
� and vice versa. This visibility graph together with the
obtained cells are used by our ordering strategies for radios-
ity computations. Our radiosity method relies on projec-
tion techniques with wavelets as basis functions and offers
two resolution schemes: gathering and shooting. More pre-
cisely, our wavelet radiosity is hierarchical and the degree
of the wavelet basis functions varies from 0 to 3, which cor-
responds to vanishing moments ranging from 1 to 4. In our
implementation, we use shooting because of its ability to
quickly provide useful images at the early stages of the res-
olution and to interactively walk through the scene while the
radiosity computations are being performed. This is made
possible even for complex environments containing thou-
sands of polygons thanks to the visibility graph.

The main contribution of our work is concerned with
new ordering strategies. Ordering has already been ad-
dressed by Teller [1]. As seen in the previous section, his
approach is based on a precise but complex and very costly
visibility preprocessing involving clusters, tubes, blockers,
etc. In addition, in [1] the ordering techniques consist in
loading into memory a cluster, the clusters visible from it
as well as potential blockers. Unlike Teller, our ordering
strategies rely on very simple visibility computations be-
tween cells instead of clusters. Indeed, the method we use
to compute visibility between two cells is due to Airey [2]
and consists in tracing rays through the portals separating
these cells.

Another difference with Teller’s work is that our order-
ing algorithms allow to load into memory a cell � (instead
of a cluster) together with those cells �
	 visible from � .
Once these cells have been loaded into memory, the sur-
face elements within � shoot their energy towards the ones
within the cells � 	 .

As said in the previous section, Teller’s method relies
on an optimal use of the disk cache. However with this
approach the user has no control on the cache, which is
a serious problem in case of multiuser computer. For ex-
ample one cannot impose maintaining in memory certain
data necessary for the current radiosity computation. This
is why one contribution of our work is to manage the mem-
ory (destinated to store the data corresponding to the cells)
as a software cache. The management of this software cache
is handled by our ordering strategies which predict for the
short, medium and long range terms the disk transfer costs
that determine the choice of the cells that will shoot their
energy. These strategies rely on discrete optimisation tech-
niques that explicitly account for the actual disk transfers.

Our ordering strategies are part of a global illumination
software package composed of different modules: ordering

module, radiosity calculation module and visibility graph
module.

Let us recall that our resolution scheme is shooting. A
cell whose surfaces are selected for shooting their energy
will be called shooting cell from now on. The role of the
ordering module is to select a shooting cell as well as those
visible from it, with the help of one of the ordering strate-
gies (which will be described later on) depending on the
cells already in memory and the visibility graph. A linear
array, termed Cell In Memory[] points out whether a cell
is already in memory or not and if it will be used by the
radiosity module. Note that a cell is used for radiosity com-
putations if and only if it has been selected by the ordering
module. Once the cells have been selected by the ordering
module, the radiosity module is invoked.

Our global illumination algorithm is given in figure 1. In
one iteration (called ITERATION in this algorithm), all the
cells are in turn selected as shooting cell.

The function ��������� ����������� is no more than the order-
ing module. It corresponds to the implementation of one
of the ordering strategies we have developped. As for the
procedure ������� �� ��! ���"���#�$� , it allows each surface of
the selected cell � to shoot its energy towards the surfaces
within � as well as those belonging to the cells visible to
� .

The next section describes in detail our ordering strate-
gies.

4 Ordering

4.1 Principle

Let us recall that the objective of this work is to compute
global illumination in very large environments with the ra-
diosity method. As in [1], to meet this goal, the scene is
partitioned into 3D cells and a graph expressing visibility
between these cells is built. This graph allows to maintain a
subset of cells in memory for which the radiosity computa-
tion is performed. Radiosity computation consists in choos-
ing a set of cells, selecting one of them for shooting its en-
ergy to the others belonging to the same set. This process is
repeated for other sets of cells till convergence. It needs to
load in memory the cells (stored on disk) concerned with the
radiosity computations, to withdraw certain non-necessary
cells from memory and move them back to the disk. This
operation requires many disk accesses, which is very costly
in terms of computation time. These disk accesses corre-
spond to the transfer of cells between the memory and the
disk. These transfers must be ordered so as to reduce expen-
sive read and write operations (from/onto the disk or mem-
ory). To be effective, an ordering algorithm must schedule
successive shootings so as to minimize disk accesses, while
maintaining rapid convergence properties. This problem is

equivalent to finding a solution to the traveling salesman
problem which is more complex in our case because the
database changes dynamically (creation of new links, new
elements due to the hierachical radiosity approach).

Our ordering strategies operate according to the algo-
rithm given in figure 2. Whenever a cell is chosen for shoot-
ing its energy, it has to be in memory as well as those visible
to it. In case one of these cells is not already in memory, it
is read from the disk, implying then memory/disk transfers
whose cost is evaluated in terms of input surfaces or cells
depending on the used ordering strategy. This cost is evalu-
ated by the function evaluate cost().

Update() is a procedure which sets to TRUE the
fields In Memory and To Be Used of the datastructures
CELL FLAGS (see figure 1) associated with the cells in
VS (see figure 2). It also sets to FALSE only the field
To Be Used associated with cells not visible from the se-
lected shooting cell but already in memory.

In our implementation, we have limited to a value %'&)(*)+
the size of the memory used for storing the cells, which
corresponds to a certain number of cells that varies during
the radiosity computation process. We have chosen a value
proportional to the maximum number of input surfaces that
can be stored in memory. We have preferred to make the
limitations of memory size rely on the number of surfaces
rather than the actual memory size (that closely depend on
the number of surface elements and links). Indeed, since
the number of surface elements and links has a complexity
of ,-�/.�021�3�.4� , . being the number of input surfaces, we
can a priori estimate %5&)(*)+ , which is more reliable. This
estimation prevents from exceeding %6&)(*)+ . For the same
reason, for some of our ordering strategies the disk transfers
cost is evaluated in terms of number of input surfaces. For
the other strategies this cost corresponds to the number of
cells to be transfered from and onto disk.

4.2 Strategies

4.2.1 Random method

This method will serve as reference to the other strategies
described hereafter. The shooting cell is randomly chosen
then loaded into memory together with the cells that are vis-
ible from it. This strategy does not account for the cost of
disk transfers.

4.2.2 Greedy method �
The objective is to reduce the cost of disk transfers ex-
pressed in terms of number of input surfaces. Each cell
is considered as a potential shooting cell and its associ-
ated cost is evaluated. This cost corresponds to the possible
transfer from the disk of this cell and its associated visible

set. The cell with minimum cost is selected as the actual
shooting cell.

4.2.3 Greedy method �
Due to the above remark, this strategy is similar to the pre-
vious one except the fact that the cost is evaluated in terms
of number of cells.

4.2.4 The traveling salesman strategy

As ordering is equivalent to the traveling salesman problem,
we propose an algorithm for solving this problem.

Using the visibility graph we build another graph which
is oriented and valuated. In this new graph ,�798 a vertex
corresponds to a cell and with each pair of cells �$�;:�<=��>��
is associated an oriented edge. The value attached to an
edge �$�;:�<=��>�� is the cost due to the cell ��> (in terms of
number of surfaces) in case ��> would be chosen as the next
shooting cell just after �;: . Note that the value of an edge
corresponds only to the cost of reading cells from disk. This
is due to the fact that since the construction of ,�7?8 is per-
formed before the radiosity computation, we cannot foresee
which cells, already in memory, have to be moved back to
disk.

The graph ,�798 is used by the traveling salesman strat-
egy (for futher implementation details, see [11]).

4.2.5 Backtracking �
Recall that the greedy algorithms select one shooting cell
at each step of the resolution process. As this choice can-
not be reconsidered, this can make the ordering less effi-
cient. One solution is to select, among all the lists of @
successive shooting cells, the one entailing the lower cost.
This amounts to predict, at one go, @ best shooting cells.
This solution is provided by the backtracking algorithm de-
scribed hereafter.

Given a set of cells ��ACB�B , the objective is to find out a
list of @ cells which will be successively selected as shoot-
ing cell. To this end we select a first cell �*D as shoot-
ing cell. Next we determine the subsequent shooting cells:
�*EGFIH���ACB�BKJL�MD�N , �POQFIH���ACBMBKJRH���D�<S�TE�N�N , ... ,
�MUWVXEYFZH���ACBMBKJRH���D�<S�TE�<\[2[)[2<S�PUWV]O�N�N . All the possi-
bilities for choosing these @ cells are represented by a tree
(having a depth @) whose root is � D and vertices the cells.
In this tree the value associated with each edge �$�T	�<S�_^"�
represents the cost due to the disk transfers when �P^ is se-
lected as shooting cell just after �T	 . The backtracking strat-
egy consists in traversing this tree in order to determine the
path of depth @ and of minimum cost. The cost is evaluated
in terms of number of input surfaces.

4.2.6 Backtracking �
This strategy is similar to the previous one except the cost
is evaluated in terms of number of cells to transfer from the
disk.

4.2.7 Max energy

The objective of this strategy is to speed-up the convergence
to the radiosity solution. With this aim in view, the cell with
maximum unshot energy is selected as shooting cell. Note
that this method does not worry about the cost due to disk
transfers.

5 Implementation and results

5.1 Implementation

Files structure

In a preprocessing step the scene is partitioned into 3D cells.
Each cell is stored on disk in a file containing a list of input
surfaces, reflectances, spectral power and intensity distribu-
tions of the light sources. The visibility graph is also saved
in a file containing the description of each cell. Indeed, in
this file a cell is described by the following data: (i) the
name of the file containing the cell, (ii) the number of the
cell, (iii) the list of cells visible from it (the visible set VS).

Partitioning into cells

Only building interiors are considered as scenes. These lat-
ter are modeled with planar convex polygons with the help
of a modeler we have developed specially for complex en-
vironments. This modeler is capable of creating different
kinds of geometric entities such as polygonal objects, walls,
ceilings, doors, windows, etc. It also allows the duplication,
removal, geometric transformation of all these entities.

To partition the scene (not necessary axial) into 3D cells,
we have used the method described in [5].

Radiosity computation

The radiosity computation starts once this partitioning has
been completed. During this computation the contents of
these cells is modified to include the created surface ele-
ments and associated links. Whenever a modified cell is
saved on disk its corresponding file is also modified to con-
tain the new data.

Each surface element is identified by its number and the
number of the cell containing it. This identification makes
possible read and write (from or onto disk) of links between
surface elements belonging to different cells.

An option is offered to the user for interactively render-
ing the scene at the intermediate stages of the resolution
while pursuing radiosity computations. To do this, two pro-
cesses are resident in memory: the first one performs the
radiosity computations while the second is in charge of ren-
dering. As soon as a cell has completed its shooting a UNIX
signal is sent to the rendering process which renders the
modified scene.

Another possibility of our global illumination algorithm
(figure 1) is to stop the calculations after a number of it-
erations fixed by the user and to save the cells in memory
which are in a certain state. Later on, we can restart, from
this state, the program to continue the radiosity calculations
till convergence.

Memory management

Disk transfers involve memory allocations and releases
which are managed by the routines malloc() and free() of
the C library libc.so. However, after several experiments
we have ascertained many swaps whereas the data resident
in memory did not require any swap. This is due to the fact
that the fragmentation of the main memory is inefficiently
managed by these routines. Consequently, we have decided
to manage memory by ourselves.

5.2 Results

The seven ordering strategies we have explained in the
previous section have been applied to different scenes. This
section provides some results only for one scene which is a
building composed of three floors. It is made up of `�ab<=a�c�d
input surfaces among which about >b<Se�e�e are light sources.
This scene has been partitioned into d�:"` cells. % & 	2(*	f+ has
been set to >�`�e�%g which corresponds to the storage of 21
cells and about >b<�e�e�e input surfaces. The number of result-
ing surface elements is about

� d�eh<Se�e�e while the number of
links (between surface elements) is equal to

� [ia millions.
The storage of all these datastructures would need about� 8� which is not offered by most of the computers even
with a virtual memory.

The results obtained with the different strategies are
given by figures 4 and 5 as well as by table 1.

In table 1 the computing times corresponding to the or-
dering strategies are given. We can see that the four best
strategies, in terms of computing time, are: Traveling Sales-
man, Greedy C, Bactracking C and Greedy S.

The figures 4, 5 provide some results, illustrated by three
plots, for each of these four best strategies. The first one
(red plot) provides the number of surfaces resident in mem-
ory at the j +�k iteration (recall that in one iteration all the
cells are in turn selected as shooting cell once only). The
second gives the number of surfaces belonging to the cur-
rent shooting cell and to the cells visible from it (green plot).

The third one gives the cost of disk transfers expressed in
terms of number of input surfaces for the j +�k selected shoot-
ing cell (blue plot). For a reason of clarity, these plots cor-
respond to only one iteration. Note that the shape of these
plots does not vary from one iteration to another.

For each strategy the number of disk transfers, expressed
in terms of input surfaces, is given by table 2.

Many conclusions can be drawn from these results. First
of all, the Random and Max Energy methods involve a more
important amount of disk transfers. This result is foresee-
able since these latter are not accounted for by these meth-
ods. Moreover, the strategies based on the number of trans-
ferred cells are more efficient than those based on the num-
ber of transferred surfaces. This can be explained as fol-
lows. When evaluating the disk transfer cost in terms of
number of surfaces, the cells made up of many surfaces are
selected only at the end of each iteration. For each iteration,
many of these cells are likely to be scattered in the scene.
Consequently, these cells may not be mutually visible. The
selection of one of them would imply a large disk transfer
cost, which increases the running time. On the other hand,
if the transfer costs are evaluated in terms of number of
cells, a cell can be selected as shooting cell and then loaded
into memory, not necessarly at the end of the iteration, even
though it contains many surfaces. Thus, expressing transfer
costs in terms of number of cells is more efficient because
spatial coherence is fully exploited.

So far, we have experimented with our ordering strate-
gies for a few complex scenes because of the very impor-
tant computing time needed. From these experiments, we
have ascertained that the traveling salesman algorithm al-
ways provides the best results. This can be explained by the
fact that in a preprocessing step this algorithm predicts, at
one go, all the @ successive best shooting cells, @ being
the total number of cells, even though it does not provide an
optimal solution since it accounts for only read operations
as explained previously (see section 4.2.4). Moreover, the
cost of this preprocessing is insignificant, which makes this
algorithm outperform the backtracking strategy.

Regarding the backtracking algorithm, it provides an op-
timal solution (i.e. lowest number of disk transfers) by pre-
dicting at one go a limited number . (.ml�ln@) of best suc-
cessive shooting cells while accounting for read and write
operations. The repeated predictions are very time consum-
ing which dramatically affects the performances of this al-
gorithm.

Figure 3 shows an image of the building obtained with
our method after complete resolution.

6 Conclusion

We have proposed seven ordering strategies for com-
puting radiosity solutions in large environments. They are

Random Greedy Greedy Traveling Backtracking Backtracking Max
Method S C Salesman S C Energy
112h 54mn 100h 46mn 79h 16mn 56h 30mn 108h 36mn 97h 12mn 132h 34mn

Table 1. Computing time for the seven ordering strategies.

Random Greedy Greedy Traveling Backtracking Backtracking Max
Method S C Salesman S C Energy
538,698 348,584 246,012 452,176 312,434 183,924 375,148

Table 2. Amount of disk transfers expressed int terms of input surfaces.

based on the partitioning of the scene into cells and on sim-
ple visibility calculations between these cells. Only a sub-
set of cells need to reside in memory: the shooting cell and
those visible from it. These resident cells change during the
resolution process, implying then many read and write op-
erations from or onto the disk. The role of these strategies
is to reduce the number of these disk transfers. It turns out
that the best strategy is Traveling Salesman. Further exper-
iments are needed to draw definitive conclusions on these
strategies.

Unlike the methods described in [1, 6] our algorithm uses
shooting rather than gathering so as to offer to the user the
possibility of interactively rendering the scene (at the inter-
mediate stages of the resolution) while pursuing the radios-
ity computation.

Another advantage of our method is its easy adaptation
to the available computing ressources. Indeed, it is possible
to stop the calculations after a certain number of iterations
and to restart them later on without affecting the final ra-
diosity solution. Moreover, since our method manages the
memory space where are stored the cells involved in the
current radiosity computation, we can set %'& 	2(P)+ to a value
depending on the size of the main memory available on the
used computer.

We are currently investigating other ordering strategies
accounting for other criteria: energy distribution, visibility
graph, etc.

Finally, these ordering algorithms are the starting point
for devising a parallel version. A processor could be in
charge of a shooting cell and those visible to it, which will
ensure data locality. This latter would increase the perfor-
mances of the parallel algorithm.

References

[1] Seth Teller & Celeste Fowler & Thomas Funkhouser
& Pat Hanrahan. Partitioning and ordering large ra-
diosity computations. In Computer Graphics Proceed-
ings, Annual Conference Series, pages 443–450, 1994.

[2] John M. Airey. Increasing Update Rates in the Build-
ing Walkthrough System with Automatic Model-Space

Subdivision And Potentially Visible Set Calculations.
PhD thesis, University of North Carolina at Chapel
Hill, 1990.

[3] Seth Teller & Pat Hanrahan. Global visibility al-
gorithms for illumination computations. In Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pages 239–246, 1993.

[4] Seth Jared Teller. Visibility Computations in Density
Occluded Polyhedral Environments. PhD thesis, Uni-
versity of California at Berkeley, 1992.

[5] D. Meneveaux & E. Maisel & K. Bouatouch. A new
partitioning method for architectural environments.
Technical Report 3148, INRIA, April 1997.

[6] Thomas Funkhouser. Coarse-grained parallelism for
hierarchical radiosity using group iterative methods.
ACM SIGGRAPH’96 proceedings, pages 343–352,
August 1996.

[7] C. Séquin T. Funkhouser, S. Teller and D. Khorram-
abadi. The uc berkeley system for interactive vi-
sulalization of large architectural models. Presence,
5(1):13–44, 1996.

[8] P. W. C. Maciel. Interactive rendering of complex 3d
models in pipelined graphics architures. Technical re-
port, Indiana University Bloomington USA, May 94.

[9] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and
J. Snyder. Hierarchical image caching for accelerated
walkthroughs of complex environments. In ACM, ed-
itor, SIGGRAPH ’96, August 1996.

[10] B. Chamberlain, T. DeRose D. Lischinski, D. Salesin,
and J Snyder. Fast rendering of complex environments
using a spatial hierarchy. In ACM, editor, Graphics
Interface ’96, 1996.

[11] D. Meneveaux, K. Bouatouch, and E. Maisel. Mem-
ory management schemes for radiosity computation in
complex environments. Technical Report 3149, IN-
RIA, April 1997.

global illumination() H
typedef struct CELL FLAGS H

boolean In Memory;
boolean To Be Used;

N ;

Integer C; /* Cell identifier */
CELL FLAGS Cell In Memory[number of cells];
ITERATION = 0;

/* VG is the visibility graph */
VG = Read Visibility Graph From Disk();
Initialize(Cell In Memory[]);
While not (convergence) AND (o�pqAC���qpqor,�@slt%gurv o��w�" �ur�xjy�.4�) H

Unmark All The Cells();
/* Choose the first shooting cell */

�gzR�������"� ���"���#�$7�8-<�o�pqAC���
pWor,�@Y<=������� o�. %g�"!{� �|b� ;
/* Choose Cell() modifies Cell In Memory[] */

Mark Cell(C);
/* The cell � is marked during the current iteration */

while not (all the cells are marked) H
/* The cell � shoots now its energy */

�_����� �� ��! �����������}<S������� o�. %g�"!{� "|h� ;
/* Choose a shooting cell which has not already */
/* shot its energy during this iteration */

�~z���������� ����������7�8-<So�pWAC���
pqo�,�@Y<S������� o�. %g�"!�� �|h� ;
Mark Cell(C);

N
o�pqAC���
pWor,�@�z�o�pqAC���
pWor,�@��L: ;

N
N

Figure 1. Global algorithm

int Choose Cell(VG,ITERATION,Cell In Memory))
H

int cost min, cost;
cost min = HUGE;
for each cell � 	 H

/* Find the set VS of cells visible from � 	 */
VS = find visible Set(� 	 ,VG);
cost = Evaluate Cost(� 	 ,VS,Cell In Memory)
if (cost l cost min) H

cost min z cost;
result = � 	 ;

N
N
Update(VG, �P	 ,Cell In Memory);
return result;

N

Figure 2. General ordering algorithm

Figure 3. Image of the total scene once the complete global illumination has been performed.

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 4. Results in terms of number of surfaces. Upper image: Greedy S. Lower image: Greedy C

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 5. Results in terms of number of surfaces. Upper image: Traveling Salesman. Lower image:
Backtracking C

